-
Abstract: Chronic sinusitis is a common disease in otolaryngology head and neck surgery, but the pathogenesis is unknown. For a long time, we have used fungi, bacterial biofilms, superantigens, and low host immunity as the cause of chronic sinusitis. With the rapid development of molecular biology technology, especially the advancement of DNA sequencing technology, people's research on human microbiome is deeper. We gradually realize the role of bacterial community in chronic sinusitis. This review will describe the role of bacteria in chronic sinusitis from three aspects: the composition of nasal bacterial community, the relationship between bacterial community and inflammatory phenotype, and the role between bacteria-host interaction.
-
Key words:
- sinusitis /
- microbiome /
- biofilm
-
-
[1] Hastan D, Fokkens WJ, Bachert C, et al. Chronic rhinosinusitis in Europe--an underestimated disease. A GA2LEN study[J]. Allergy, 2011, 66(9): 1216-1223. doi: 10.1111/j.1398-9995.2011.02646.x
[2] Lam K, Schleimer R, Kern RC. The Etiology and Pathogenesis of Chronic Rhinosinusitis: a Review of Current Hypotheses[J]. Curr Allergy Asthma Rep, 2015, 15(7): 41. doi: 10.1007/s11882-015-0540-2
[3] Lee K, Pletcher SD, Lynch SV, et al. Heterogeneity of Microbiota Dysbiosis in Chronic Rhinosinusitis: Potential Clinical Implications and Microbial Community Mechanisms Contributing to Sinonasal Inflammation[J]. Front Cell Infect Microbiol, 2018, 8: 168. doi: 10.3389/fcimb.2018.00168
[4] Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development[J]. Cell Host Microbe, 2015, 17(5): 704-715. doi: 10.1016/j.chom.2015.03.008
[5] García-rodríguez JA, Fresnadillo Martínez MJ. Dynamics of nasopharyngeal colonization by potential respiratory pathogens[J]. J Antimicrob Chemother, 2002, 50 Suppl S2: 59-73.
[6] Pérez-Losada M, Authelet KJ, Hoptay CE, et al. Pediatric asthma comprises different phenotypic clusters with unique nasal microbiotas[J]. Microbiome, 2018, 6(1): 179. doi: 10.1186/s40168-018-0564-7
[7] Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection[J]. Proc Natl Acad Sci U S A, 2011, 108(13): 5354-5359. doi: 10.1073/pnas.1019378108
[8] Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease[J]. N Engl J Med, 2016, 375(24): 2369-2379. doi: 10.1056/NEJMra1600266
[9] Huang YJ, Boushey HA. The microbiome in asthma[J]. J Allergy Clin Immunol, 2015, 135(1): 25-30. doi: 10.1016/j.jaci.2014.11.011
[10] Bosch AATM, Levin E, Van Houten MA, et al. Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery[J]. EBioMedicine, 2016, 9: 336-345. doi: 10.1016/j.ebiom.2016.05.031
[11] Biesbroek G, Bosch AA, Wang X, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants[J]. Am J Respir Crit Care Med, 2014, 190(3): 298-308.
[12] Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. doi: 10.1164/rccm.201407-1240OC
[13] Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior[J]. Nat Commun, 2017, 8: 15062. doi: 10.1038/ncomms15062
[14] Biswas K, Hoggard M, Jain R, et al. The nasal microbiota in health and disease: variation within and between subjects[J]. Front Microbiol, 2015, 9: 134.
[15] Cope EK, Goldberg AN, Pletcher SD, et al. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences[J]. Microbiome, 2017, 5(1): 53. doi: 10.1186/s40168-017-0266-6
[16] Mahdavinia M, Engen PA, LoSavio PS, et al. The nasal microbiome in patients with chronic rhinosinusitis: Analyzing the effects of atopy and bacterial functional pathways in 111 patients[J]. J Allergy Clin Immunol, 2018, 142(1): 287-290. doi: 10.1016/j.jaci.2018.01.033
[17] Chalermwatanachai T, Vilchez-Vargas R, Holtappels G, et al. Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota[J]. Sci Rep, 2018, 8(1): 7926. doi: 10.1038/s41598-018-26327-2
[18] Chalermwatanachai T, Zhang N, Holtappels G, et al. Association of Mucosal Organisms with Patterns of Inflammation in Chronic Rhinosinusitis[J]. PLoS One, 2015, 10(8): e0136068. doi: 10.1371/journal.pone.0136068
[19] Ramakrishnan VR, Hauser LJ, Feazel LM, et al. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome[J]. J Allergy Clin Immunol, 2015, 136(2): 334-342. doi: 10.1016/j.jaci.2015.02.008
[20] Shenoy MK, Iwai S, Lin DL, et al. Immune Response and Mortality Risk Relate to Distinct Lung Microbiomes in Patients with HIV and Pneumonia[J]. Am J Respir Crit Care Med, 2017, 195(1): 104-114. doi: 10.1164/rccm.201603-0523OC
[21] Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation[J]. Nat Med, 2016, 22(10): 1187-1191. doi: 10.1038/nm.4176
[22] Bomar L, Brugger SD, Yost BH, et al. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols[J]. mBio, 2016, 7(1): E01725-15.
[23] De Rudder C, Calatayud AM, Lebeer S, et al. Modelling upper respiratory tract diseases: getting grips on host-microbe interactions in chronic rhinosinusitis using in vitro technologies[J]. Microbiome, 2018, 6(1): 75. doi: 10.1186/s40168-018-0462-z
[24] Ramage G, Mowat E, Jones B, et al. Our current understanding of fungal biofilms[J]. Crit Rev Microbiol, 2009, 35(4): 340-355. doi: 10.3109/10408410903241436
[25] Boase S, Valentine R, Singhal D, et al. A sheep model to investigate the role of fungal biofilms in sinusitis: fungal and bacterial synergy[J]. Int Forum Allergy Rhinol, 2011, 1(5): 340-347. doi: 10.1002/alr.20066
[26] Peters BM, Jabra-Rizk MA, O'May GA, et al. Polymicrobial interactions: impact on pathogenesis and human disease[J]. Clin Microbiol Rev, 2012, 257(1): 193-213.
[27] Ramsey MM, Rumbaugh KP. Metabolite cross-feeding enhances virulence in a model polymicrobial infection[J]. PLoS Pathog, 2011, 7(3): e1002012. doi: 10.1371/journal.ppat.1002012
[28] Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria[J]. Annu Rev Cell Dev Biol, 2005, 21: 319-346. doi: 10.1146/annurev.cellbio.21.012704.131001
[29] Yoon MY, Min KB, Lee KM, et al. A single gene of a commensal microbe affects host susceptibility to enteric infection[J]. Nat Commun, 2016, 7(7): 11606.
[30] Fuqua C, Greenberg EP. Listening in on bacteria: acyl-homoserine lactone signalling[J]. Nat Rev Mol Cell Biol, 2002, 3(9): 685-695. doi: 10.1038/nrm907
[31] Hardie KR, Heurlier K. Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development[J]. Nat Rev Microbiol, 2008, 6(8): b635-643. doi: 10.1038/nrmicro1916
[32] Riedel K, Hentzer M, Geisenberger O, et al. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms[J]. Microbiology, 2001, 147(Pt 12): 3249-3262.
[33] Fugère A, Lalonde SD, Mitchell G, et al. Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients[J]. PLoS One, 2014, 9(1): e86705. doi: 10.1371/journal.pone.0086705
[34] Lee K, Yoon SS. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness[J]. J Microbiol Biotechnol, 2017, 27(6): 1053-1064. doi: 10.4014/jmb.1611.11056
[35] Karatuna O, Yagci A. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates[J]. Clin Microbiol Infect, 2010, 16(12): 1770-1775. doi: 10.1111/j.1469-0691.2010.03177.x
[36] Schwarzer C, Fu Z, Patanwala M, et al. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia[J]. Cell Microbiol, 2012, 14(5): 698-709. doi: 10.1111/j.1462-5822.2012.01753.x
[37] Hooi DS, Bycroft BW, Chhabra SR, et al. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules[J]. Infect Immun, 2004, 72(11): 6463-6470. doi: 10.1128/IAI.72.11.6463-6470.2004
[38] Cohen NA. The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis[J]. Laryngoscope, 2017, 127(1): 44-51. doi: 10.1002/lary.26198
[39] Workman AD, Maina IW, Brooks SG, et al. The Role of Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and Chronic Rhinosinusitis[J]. Front Immunol, 2018, 9: 624 doi: 10.3389/fimmu.2018.00624
-
计量
- 文章访问数: 1681
- PDF下载数: 326
- 施引文献: 0