鼻部菌群在慢性鼻窦炎中的作用

王琳琳, 陈锋基, 杨龙苏, 等. 鼻部菌群在慢性鼻窦炎中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(5): 474-477. doi: 10.13201/j.issn.2096-7993.2020.05.023
引用本文: 王琳琳, 陈锋基, 杨龙苏, 等. 鼻部菌群在慢性鼻窦炎中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(5): 474-477. doi: 10.13201/j.issn.2096-7993.2020.05.023
WANG Linlin, CHEN Fengji, YANG Longsu, et al. Role of nasal microbiome in chronic sinusitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2020, 34(5): 474-477. doi: 10.13201/j.issn.2096-7993.2020.05.023
Citation: WANG Linlin, CHEN Fengji, YANG Longsu, et al. Role of nasal microbiome in chronic sinusitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2020, 34(5): 474-477. doi: 10.13201/j.issn.2096-7993.2020.05.023

鼻部菌群在慢性鼻窦炎中的作用

详细信息

Role of nasal microbiome in chronic sinusitis

More Information
  • 加载中
  • [1]

    Hastan D, Fokkens WJ, Bachert C, et al. Chronic rhinosinusitis in Europe--an underestimated disease. A GA2LEN study[J]. Allergy, 2011, 66(9): 1216-1223. doi: 10.1111/j.1398-9995.2011.02646.x

    [2]

    Lam K, Schleimer R, Kern RC. The Etiology and Pathogenesis of Chronic Rhinosinusitis: a Review of Current Hypotheses[J]. Curr Allergy Asthma Rep, 2015, 15(7): 41. doi: 10.1007/s11882-015-0540-2

    [3]

    Lee K, Pletcher SD, Lynch SV, et al. Heterogeneity of Microbiota Dysbiosis in Chronic Rhinosinusitis: Potential Clinical Implications and Microbial Community Mechanisms Contributing to Sinonasal Inflammation[J]. Front Cell Infect Microbiol, 2018, 8: 168. doi: 10.3389/fcimb.2018.00168

    [4]

    Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development[J]. Cell Host Microbe, 2015, 17(5): 704-715. doi: 10.1016/j.chom.2015.03.008

    [5]

    García-rodríguez JA, Fresnadillo Martínez MJ. Dynamics of nasopharyngeal colonization by potential respiratory pathogens[J]. J Antimicrob Chemother, 2002, 50 Suppl S2: 59-73.

    [6]

    Pérez-Losada M, Authelet KJ, Hoptay CE, et al. Pediatric asthma comprises different phenotypic clusters with unique nasal microbiotas[J]. Microbiome, 2018, 6(1): 179. doi: 10.1186/s40168-018-0564-7

    [7]

    Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection[J]. Proc Natl Acad Sci U S A, 2011, 108(13): 5354-5359. doi: 10.1073/pnas.1019378108

    [8]

    Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease[J]. N Engl J Med, 2016, 375(24): 2369-2379. doi: 10.1056/NEJMra1600266

    [9]

    Huang YJ, Boushey HA. The microbiome in asthma[J]. J Allergy Clin Immunol, 2015, 135(1): 25-30. doi: 10.1016/j.jaci.2014.11.011

    [10]

    Bosch AATM, Levin E, Van Houten MA, et al. Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery[J]. EBioMedicine, 2016, 9: 336-345. doi: 10.1016/j.ebiom.2016.05.031

    [11]

    Biesbroek G, Bosch AA, Wang X, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants[J]. Am J Respir Crit Care Med, 2014, 190(3): 298-308.

    [12]

    Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. doi: 10.1164/rccm.201407-1240OC

    [13]

    Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior[J]. Nat Commun, 2017, 8: 15062. doi: 10.1038/ncomms15062

    [14]

    Biswas K, Hoggard M, Jain R, et al. The nasal microbiota in health and disease: variation within and between subjects[J]. Front Microbiol, 2015, 9: 134.

    [15]

    Cope EK, Goldberg AN, Pletcher SD, et al. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences[J]. Microbiome, 2017, 5(1): 53. doi: 10.1186/s40168-017-0266-6

    [16]

    Mahdavinia M, Engen PA, LoSavio PS, et al. The nasal microbiome in patients with chronic rhinosinusitis: Analyzing the effects of atopy and bacterial functional pathways in 111 patients[J]. J Allergy Clin Immunol, 2018, 142(1): 287-290. doi: 10.1016/j.jaci.2018.01.033

    [17]

    Chalermwatanachai T, Vilchez-Vargas R, Holtappels G, et al. Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota[J]. Sci Rep, 2018, 8(1): 7926. doi: 10.1038/s41598-018-26327-2

    [18]

    Chalermwatanachai T, Zhang N, Holtappels G, et al. Association of Mucosal Organisms with Patterns of Inflammation in Chronic Rhinosinusitis[J]. PLoS One, 2015, 10(8): e0136068. doi: 10.1371/journal.pone.0136068

    [19]

    Ramakrishnan VR, Hauser LJ, Feazel LM, et al. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome[J]. J Allergy Clin Immunol, 2015, 136(2): 334-342. doi: 10.1016/j.jaci.2015.02.008

    [20]

    Shenoy MK, Iwai S, Lin DL, et al. Immune Response and Mortality Risk Relate to Distinct Lung Microbiomes in Patients with HIV and Pneumonia[J]. Am J Respir Crit Care Med, 2017, 195(1): 104-114. doi: 10.1164/rccm.201603-0523OC

    [21]

    Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation[J]. Nat Med, 2016, 22(10): 1187-1191. doi: 10.1038/nm.4176

    [22]

    Bomar L, Brugger SD, Yost BH, et al. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols[J]. mBio, 2016, 7(1): E01725-15.

    [23]

    De Rudder C, Calatayud AM, Lebeer S, et al. Modelling upper respiratory tract diseases: getting grips on host-microbe interactions in chronic rhinosinusitis using in vitro technologies[J]. Microbiome, 2018, 6(1): 75. doi: 10.1186/s40168-018-0462-z

    [24]

    Ramage G, Mowat E, Jones B, et al. Our current understanding of fungal biofilms[J]. Crit Rev Microbiol, 2009, 35(4): 340-355. doi: 10.3109/10408410903241436

    [25]

    Boase S, Valentine R, Singhal D, et al. A sheep model to investigate the role of fungal biofilms in sinusitis: fungal and bacterial synergy[J]. Int Forum Allergy Rhinol, 2011, 1(5): 340-347. doi: 10.1002/alr.20066

    [26]

    Peters BM, Jabra-Rizk MA, O'May GA, et al. Polymicrobial interactions: impact on pathogenesis and human disease[J]. Clin Microbiol Rev, 2012, 257(1): 193-213.

    [27]

    Ramsey MM, Rumbaugh KP. Metabolite cross-feeding enhances virulence in a model polymicrobial infection[J]. PLoS Pathog, 2011, 7(3): e1002012. doi: 10.1371/journal.ppat.1002012

    [28]

    Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria[J]. Annu Rev Cell Dev Biol, 2005, 21: 319-346. doi: 10.1146/annurev.cellbio.21.012704.131001

    [29]

    Yoon MY, Min KB, Lee KM, et al. A single gene of a commensal microbe affects host susceptibility to enteric infection[J]. Nat Commun, 2016, 7(7): 11606.

    [30]

    Fuqua C, Greenberg EP. Listening in on bacteria: acyl-homoserine lactone signalling[J]. Nat Rev Mol Cell Biol, 2002, 3(9): 685-695. doi: 10.1038/nrm907

    [31]

    Hardie KR, Heurlier K. Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development[J]. Nat Rev Microbiol, 2008, 6(8): b635-643. doi: 10.1038/nrmicro1916

    [32]

    Riedel K, Hentzer M, Geisenberger O, et al. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms[J]. Microbiology, 2001, 147(Pt 12): 3249-3262.

    [33]

    Fugère A, Lalonde SD, Mitchell G, et al. Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients[J]. PLoS One, 2014, 9(1): e86705. doi: 10.1371/journal.pone.0086705

    [34]

    Lee K, Yoon SS. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness[J]. J Microbiol Biotechnol, 2017, 27(6): 1053-1064. doi: 10.4014/jmb.1611.11056

    [35]

    Karatuna O, Yagci A. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates[J]. Clin Microbiol Infect, 2010, 16(12): 1770-1775. doi: 10.1111/j.1469-0691.2010.03177.x

    [36]

    Schwarzer C, Fu Z, Patanwala M, et al. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia[J]. Cell Microbiol, 2012, 14(5): 698-709. doi: 10.1111/j.1462-5822.2012.01753.x

    [37]

    Hooi DS, Bycroft BW, Chhabra SR, et al. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules[J]. Infect Immun, 2004, 72(11): 6463-6470. doi: 10.1128/IAI.72.11.6463-6470.2004

    [38]

    Cohen NA. The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis[J]. Laryngoscope, 2017, 127(1): 44-51. doi: 10.1002/lary.26198

    [39]

    Workman AD, Maina IW, Brooks SG, et al. The Role of Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and Chronic Rhinosinusitis[J]. Front Immunol, 2018, 9: 624 doi: 10.3389/fimmu.2018.00624

  • 加载中
计量
  • 文章访问数:  1681
  • PDF下载数:  326
  • 施引文献:  0
出版历程
收稿日期:  2019-05-15
刊出日期:  2020-05-05

目录